

Autonomous College Permanently Affiliated to VTU, Approved by AICTE & UGC Accredited by NAAC with 'A' Grade, Accredited by NBA

The Trust is a Recipient of Prestigious Rajyotsava State Award 2012 Conferred by the Government of Karnataka Awarded Outstanding Technical Education Institute in Karnataka-2016 Ring Road, Bellandur Post, Near Marathalli, Bangalore -560 103, INDIA

Academic Year 2020-21 ISE – Information Science & Engineering **Third and Fourth Semester Scheme and Syllabus**

CONTENTS

1.	Vision, Mission and Program Educational Objectives (PEO)	1
2.	Program Specific Outcomes(PSOs)	2
3.	Program Outcomes (PO) with Graduate Attributes	2
4.	Mapping of POs with PEOs	3
	SCHEME	
5.	Scheme of Third Semester B.E	4
6.	Scheme of Fourth Semester B.E	5
	SYLLABUS	
7.	Syllabus of Third Semester BE:	6
	a) Applied Mathematics-III	7
	b) Economics for Engineers	10
	c) Aadalita Kannada / Vyavaharika Kannada	12
	d) Digital Logic Design	14
	e) Data Structures using C	16
	f) Computer Organization	19
	g) Python Programming	21
	h) Digital Logic Design Laboratory	23
	i) Data Structures using C Laboratory	24
	j) Python Programming Laboratory	27
	k) Mini Project	30
8.	Syllabus of Fourth Semester BE:	32
	a) Discrete Mathematics and Graph Theory	33
	b) Life skills for Engineers	36
	c) Environmental Science and Awareness	37
	c) Database Management Systems	39
	d) OOP with Java	41
	e) Operating Systems	43
	f) Database Management Systems Laboratory	45
	g) OOP with Java Laboratory	47
	h) Operating Systems Laboratory	51
	i) Mini Project	54

Appendix A	Outcome Based Education	53
Appendix B	Graduate Parameters as defined by National Board of Accreditation	54
Appendix C	Bloom's Taxonomy	56

VISION

To evolve as a centre of academic excellence and advanced research in information science and engineering discipline and to endeavour the computational competence of students for their dream career achievement and enhancing the managerial and technical skills.

MISSION

To inculcate students with profound understanding of fundamentals related to discipline, attitudes, skills and their application in solving real world problems, with an inclination towards societal issues and research.

Program Education objectives (PEOs)

PEO1	To excel in their professional career with expertise in providing solutions to
	Information Technology problems.
PEO2	To pursue higher studies with profound knowledge enriched with academia and
	industrial skill sets.
	To exhibit adaptive and agile skills in the core area of Information Science &
PEO3	Engineering to meet the technical and managerial challenges.
	To demonstrate interpersonal skills, professional ethics to work in a team to make
PEO4	a positive impact on society.

PEO to Mission Statement Mapping

Mission Statements	PEO1	PEO2	PEO3	PEO4
To prepare the students with academic and industry exposure				
by empowering and equipping them with necessary domain	3	2	2	2
knowledge.				
To prepare the students for global career in information	2	2	2	2
technology with relevant technical and soft skills.	3	2	2	2
To encourage students to participate in co-curricular and				
extracurricular activities leading to the enhancement of their	2	2	3	3
social and professional skills.				

Correlation: 3- High, 2-Medium, 1-Low

Program Specific Outcomes(PSO's)

PSO1: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics and networking or efficient design of computer based systems of varying complexity.

PSO2:The ability to apply standard practices and strategies in software project development using innovative ideas and open ended programming environment with skills in teams and professional ethics to deliver a quality product for business success.

	Graduate Attributes	Program Outcomes (POs)							
1	Engineering Knowledge	PO1: The basic knowledge of Mathematics, Science and Engineering.							
2	Problem analysis	PO2: An Ability to analyze, formulate and solve engineering problems.							
3	Design and Development of Solutions	PO3: An Ability to design system, component or product and develop interfaces among subsystems of computing.							
4	Investigation of Problem	PO4: An Ability to identify, formulate and analyze complex engineering problem and research literature through core subjects of Computer Science.							
5	Modern Tool usagePO5: An Ability to use modern engineering tools and equipments for computing practice.								
6	Engineer and society PO6: An Ability to assess societal, health, cultural, safety and legal issues in context of professional practice in Computer Science & Engineering.								
7	Environment and sustainability	PO7: The broad education to understand the impact of engineering solution in a global, economic, environmental and societal context.							
8	Ethics	PO8: An understanding of professional and ethical responsibility.							
9	Individual & team work	PO9: An Ability to work both as individual and team player in achieving a common goal.							
10	Communication	PO10: To communicate effectively both in written and oral formats with wide range of audiences.							
11	Lifelong learning	PO11: Knowledge of contemporary issues, Management and Finance.							
12	Project management and finance	PO12: An Ability to recognize the need and thereby to engage in independent and life-long learning for continued professional and career advancement.							

Program Outcomes (PO) with Graduate Attributes

Mapping of POs with PEOs

DO1 DO2 DO2 DO4 DO5 DO6 DO7 DO8 DO0 DO10 DO11 DO					8	0.0=0		-				
POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

PEO1	3	3	3	2	3	-	-	-	3	-	3	-
PEO2	3	3	3	2	3	-	-	-	3	-	3	-
PEO3	3	3	3	2	3	-	-	-	3	-	3	-
PEO4	3	3	3	2	3	-	-	-	3	-	3	-

Correlation: 3- High, 2-Medium, 1-Low

New Horizon College of Engineering Department of Information Science and Engineering Third Semester B.E Program–Scheme AY: 2020-21

	Course	Course Name	BOS	Dis	Credit tributi	on	erall dits	tact urs	Marks		
	Code	Course Name		L	т	Р	Ove Cre	Con	CIE	SEE	TOTAL
SI. No.											
1.	19ISE31	Applied Mathematics-III	MAT	2	1	0	3	4	50	50	100
2.	19HSS321	Economics for Engineers	HSS	2	0	0	2	2	25	25	50
3	20HSS324 /	Aadalitha Kannada /	нсс	1	0	0	1	2	25	25	50
0.	20HSS325	Vyavaharika Kannada	1100	-	Ū	Ű	-	L	23	23	30
4.	19ISE33	Digital Logic Design	ISE	3	0	0	3	3	50	50	100
5.	19ISE34	Data Structures using C	ISE	3	0	0	3	3	50	50	100
6.	19ISE35	Computer Organization	ISE	3	0	0	3	3	50	50	100
7.	19ISE36	Python Programming	ISE	3	0	0	3	3	50	50	100
8.	19ISL37	Digital Logic Design lab	ISE	0	0	1	1	2	25	25	50
9.	19ISL38	Data Structures Using C lab	ISE	0	0	1.5	1.5	3	25	25	50
10.	19ISL39	Python Programming lab	ISE	0	0	1.5	1.5	3	25	25	50
11.	19ISE391	Mini Project	ISE	-	-	-	2	-	25	25	50
	<u>.</u>	Total	!		<u>.</u>	<u>.</u>	24	28	400	400	800
	Credit vario	Distribution across (Contact Hour	tact Hours per week			Average	Assessme Blooms Le	nt of Vario evel	ous	

New Horizon College of Engineering Department of Information Science and Engineering Fourth Semester B.E Program-Scheme AY: 2020-21

Sl. No.	Course Code	Course Name	BOS	Di	Credi stribu	t tion	Dverall Credits	ontact Hours	Marks		
				L	т	Р		0 -	CIE	SEE	TOTAL
1.	19ISE41	Discrete Mathematics And Graph Theory	MAT	2	1	0	3	4	50	50	100
2.	19HSS422	Life Skills for Engineers	HSS	3	0	0	3	3	50	50	100
3.	19HSS423	Environmental Science and Awareness	HSS	0	0	0	0	2	25	25	50
4.	19ISE43	Database Management Systems	ISE	3	0	0	3	3	50	50	100
5.	19ISE44	Oops with Java	ISE	3	0	0	3	3	50	50	100
6.	19ISE45	Operating Systems	ISE	3	0	0	3	3	50	50	100
7.	19ISL46	Database Management Systems Lab	ISE	0	0	2	2	4	25	25	50
8.	19ISL47	Oops with Java lab	ISE	0	0	1.5	1.5	3	25	25	50
9.	19ISL48	Operating Systems lab	ISE	0	0	1.5	1.5	3	25	25	50
10.	19ISE49	Mini Project	ISE	-	-	-	2	-	25	25	50
		Total	• 	•	•	•	22	28	375	375	750

THIRD SEMESTER

(SYLLABUS)

APPLIED MATHEMATICS – III

Course Code : 19CSE31/19ISE31 L:T:P : 2:1:0

Exam Hours : 03

Credits : 03 CIE Marks : 50 SEE Marks : 50

Course Outcomes: At the end of the Course, the Student will be able to do the following:

CO1	Use appropriate numerical methods to solve algebraic equations and transcendental
COI	equations
CON	Solve initial value problems using appropriate numerical methods and also Evaluate
CO2	definite integrals numerically
CO3	Fit a suitable curve by the method of least squares and determine the lines of
	regression for a set of statistical data and obtain the extremal of a functional.
CO4	Gain ability to use probability distributions to analyze and solve real time problems
CO5	Apply the concept of sampling distribution to solve engineering problems
CO6	Use the concepts to analyze the data to make decision about the hypothesis

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	-	-	-	1	1	-	2
CO2	3	3	3	2	2	-	-	-	1	1	-	2
CO3	3	3	3	2	2	-	-	-	1	1	-	2
CO4	3	3	3	2	2	-	-	-	1	1	-	2
CO5	3	3	3	2	2	-	-	-	1	1	-	2
CO6	3	3	3	2	2				1	1		2

	Course Syllabus		
Module No.	Contents of the Module	Hours	Co's
1	Numerical Methods-1: Numerical solution of algebraic and transcendental equations: Regula-falsi method and Newton-Raphson method-Problems. Interpolation: Newton's forward and backward formulae for equal intervals, Newton divided difference and Lagrange's formulae for unequal intervals (without proofs)-Problems.	9L + 2T	CO1
2	Numerical Methods 2: Numerical solution of ordinary differential equations of first order and of first degree: Modified Euler's method and Runge-Kutta method of fourth-order-Problems. Milne's predictor and corrector methods- Problems. Numerical integration: Simpson's 1/3 rd rule, Simpson's 3/8 th rule, Weddle's rule (without proofs)-Problems. Applications: Application of numerical integration to velocity of a	9L + 2T	CO2
	Applications: Application of numerical integration to velocity of a		

	particle and volume of solids.		
3	Statistical Methods and Calculus of Variation: Fitting of the curves of the form $y = a+bx$, $y = a+bx+cx^2$, $y = ae^{bx}$, $y = ax^b$, and $y = ab^x$ by the method of least square-Problems.Correlation and Regression lines-Problems. Variation of a function and a functional, Variational problems, Euler's equation and Isoperimetric problems. Applications: Minimal surface of revolution and Hanging cable.	9L + 2T	CO3
4	 Probability distributions: Random variables (discrete and continuous), probability density functions. Discrete Probability distributions: Binomial and Poisson distributions-Problems. Continuous Probability distributions: Exponential and Normal distributions-Problems. Joint Probability distributions: Mathematical expectation, correlation, covariance (discrete random variables only)-Problems. 	9L + 2T	CO4
5	Sampling Theory: Sampling, Sampling distributions, test of hypothesis of large samples for means and proportions, confidence limits for means, Student's t-distribution, F-distribution and Chi-square distribution for test of goodness of fit for small samples.	9L + 2T	CO5, CO6

TEXT BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley-India Publishers, 10thEdition, 2014, ISBN: 978-81-265-5423-2.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2014, ISBN: 978-81-7409-195-5.

REFERENCE BOOKS:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, 4th Edition, 2015, ISBN: 978-0-273-73409-3
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education (India) Private Limited, 4th Edition, 2016, ISBN: 978-0-07-063419-0.

3. H. K. Dass, Advanced Engineering Mathematics, S. Chand & Company Ltd., 28th Edition, 2012,ISBN: 81-219-0345-9.

4. N.P.Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications (P) Ltd.,9th Edition, 2014, ISBN: 978-81-318-0832-0.

Assessment Pattern:

CIE- Continuous Internal Evaluation (50 Marks).

Bloom's Category	Tests (25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)		
Remember	5	5	-		
Understand	5	5	-		

Apply	5	5	10
Analyze	5	-	-
Evaluate	5	-	-
Create	-	-	-

SEE- Semester End Examination (50Marks).

Bloom's Category	Questions (50 Marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

ECONOMICS FOR ENGINEERS

Course Code : 19HSS321/421 L:T:P : 2:0:0 Exam Hour : 03 Credits : 02 CIE MARKS : 25 SEE MARKS : 25

Course Outcomes: On completion of the course, students should be able to:

CO1	Understand the importance of economics in decision making processes in a day to day life.
CO2	Analyze business environment at micro and macroeconomic level and its impact on industries in country's economy.
CO3	Acquire knowledge about costing and estimation of projects for profit making.
CO4	Apply principles of budgeting and finance for entrepreneurial success.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	-	1	-	2	2	2	1	2	2
CO2	2	2	1	-	1	-	2	2	2	1	2	2
CO3	2	2	1	-	1	-	2	2	2	1	2	2
CO4	2	2	1	-	1	-	2	2	2	1	2	2

Module	Module Contents	Hrs	Cos
	Introduction to Economics: Role of Engineer as an Economist,		
т	Types and problem of economies, Basics of economics (GDP,	4	CO1.2
1	National income, inflation, business cycle, fiscal and monetary	4	C01,5
	policies, balance of payment).		
	Basic concepts of Microeconomics: concept of Demand & Elasticity		
	of Demand. Concept of Supply & Elasticity of Supply, Meaning of		
II	Production and factors of production, Production Possibility Curve,	5	
	Law of variable proportions and returns to scale. Relevance of		CO2,3
	Depreciation towards industry, Depreciation computing methods.		

III	Concepts of cost of production: different types of cost; accounting cost, sunk cost, marginal cost and opportunity cost. Break even analysis, Make or Buy decision. Cost estimation, Elements of cost as Direct Material Costs, Direct Labor Costs, Fixed Over-Heads, Factory cost, Administrative Over- Heads.	4	CO3,4
IV	Capital budgeting: Traditional and modern methods, Payback period method, IRR, ARR, NPV, PI Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams, Personal Loans and EMI Payment. Present worth, Future worth.	4	CO1,3,4
V	Book Keeping and Accounts: Journal, Ledger, Trial balance, asset Types, profit & loss account, balance sheet.	5	CO1,2,3,4

TEXT BOOKS:

- 1. Riggs J.L, Engineering Economy, TMH, 2012 edition
- 2. Jain T.R., Economics for Engineers, VK Publications, 2008 Edition
- 3. IM PANDEY, Finacial Management, Vikas Pub. House, 2018 Edition
- 4. D N Dwivedi, MangerialEconomics ,Vikas Pub. House, 2018 Edition
- 5. Dr.A.R Sainath, Sasikala Devi, Engineering Economics and Financial Accounting, Charulatha Publications, 2015 edition

REFERENCE BOOKS:

- 1. Thuesen H.G, Engineering Economy. PHI,1984
- 2. Prasanna Chandra, Financial Mangement, TMH, 2007
- 3. Singh Seema, Economics for Engineers, IK International, 2014
- 4. Chopra P. N, Principle of Economics, Kalyani Publishers, 2012
- 5. Dewett K K, Modern Economic Theory, S. Chand, 2006

Assessment pattern

CIE – Continuous Internal Evaluation (50 Marks, Theory)

Bloom's Category	Test	Assignment	SSR
Marks (out of 50)	10	7.5	7.5
Remember	2.5		
Understand	2.5		
Apply	2.5		
Analyze	2.5	2.5	2.5
Evaluate		2.5	2.5
Create		2.5	2.5

SEE –Semester Ending Examination (50 Marks)

Bloom's Category	SEE Theory (25)			
Remember	10			
Understand	5			
Apply	5			
Analyze	5			
Evaluate	-			
Create	-			

ಆಡಕತ ಕನ್ನಡ

(Kannada for administration)

Course Code	:20HSS324/424	Credits : 01
L: T: P	: 1:0:0	CIE Marks : 25
Exam Hours	:2	SEE Marks : 25

ಆಡಳಿತ ಕನ್ನಡ ಅಧ್ಯಯನದ ಕಲಿಕಾಂಶಗಳು

C01 ವಿದ್ಯಾರ್ಥಿಗಳು ಕನ್ನಡ ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಹಾಗೂ ಭಾಷಾ ರಚನೆ ನಿಯಮಗಳನ್ನು ಅರ್ಥ್ಯಸಿಕೊಳ್ಳುತ್ತಾರೆ

C02 ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲನ ದೋಷಗಕು, ನಿವಾರಣೆ ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು ಅರಿತುಕೊಕ್ಕುವರು

C03 ಸರ್ಕಾರಿ ಮತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರ ವ್ಯವಹಾರದ ಬಗ್ಗೆ ತಿಳುವಳಕೆ ಪಡೆಯುವರು

C04 ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ ಬಗ್ಗೆ ಅಸಕ್ತಿ ವಹಿಸಿಕೊಳ್ಳುವರು

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	•	-	-	-	-	-	-	-	3	-	-
CO2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	-	-	-	-	-	-	-	3	-	-

ಪರಿವಿಡಿ (ಪಠ್ಯ ಮಸ್ತಕದಲ್ಲಿರುವ ವಿಷಯಗಳ ಪಟ್ಟಿ)

ಅಧ್ಯಾಯ –1 ಕನ್ನಡ ಭಾಷೆ–ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ

ಅಧ್ಯಾಯ -2 ಭಾಷಾ ಪ್ರಯೋಗದಲ್ಲಾ ಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ

ಅಧ್ಯಾಯ -3 ಲೇಖನ ಚಿಹೈಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ

ಅಧ್ಯಾಯ –4 ಪತ್ರ ವ್ಯವಹಾರ

ಅಧ್ಯಾಯ –5 ಆಡಳಿತ ಪತ್ರಗಳು

ಅಧ್ಯಾಯ –6 ಸರ್ಕಾರದ ಆದೇಶ ಪತ್ರಗಳು

ಅಧ್ಯಾಯ -7 ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ರಚನೆ (ಪ್ರಿಸೈಸ್ ರೈಟಿಂಗ್),ಪ್ರಬಂಧ ಮತ್ತು ಭಾಷಾಂತರ

ಅಧ್ಯಾಯ -8 ಕನ್ನಡ ಶಬ್ದ ಸಂಗ್ರಹ

ಅಧ್ಯಾಯ -9 ಕಂಪ್ಯೂಟರ್ ಹಾಗೂ ಮಾಹಿತಿ ತಂತ್ರಜ್ಞಾನ

ಅಧ್ಯಾಯ -10 ಪಾರಿಭಾಷಿಕ ಆಡಳಿತ ಕನ್ನಡ ಪದಗಳು ಮತ್ತು ತಾಂತ್ರಿಕ /ಕಂಪ್ಯೂಟರ್ ಪಾರಿಭಾಷಿಕ ಪದಗಳು

ಆಡಳಿತ ಕನ್ನಡ ಪಠ್ಯಮಸ್ಥಕದ ಲೇಖಕರು

ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ, ಪ್ರೋ. ವಿ . ಕೇಶವಮೂರ್ತಿ, ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ಬಿ.ತಾ.ಬಿ.ಬೆಳಗಾವಿ

ಪರೀಕ್ಷೆಯ ವಿಧಾನ:

ನಿರಂತರ ಅಂತರಿಕ ಮೌಲ್ಯಮಾಪನ (Continuous Internal Evaluation) : 25 ಅಂಕಗಳು ಸಮಿಸ್ಟರ್ ಪರೀಕ್ಷೆ (Semester End Examination) : 25 ಅಂಕಗಳು

Blooms Category	CIE (25)	SEE (25)
Remember	12	12
Understand	13	13

Vyavaharika Kannada

(Kannada for use)

Course Code	: 20HSS325/425	Credits 01
L: T: P	: 1:0:0	CIE Marks 25
Exam Hours	:2	SEE Marks 25

Course Outcome: On completion of the course student will be able to:

- CO1 Understand Kannada Language.
- CO2 Communicate in Kannada Language
- CO3 Read simple Kannada words
- CO4 Pronounce Kannada words correctly

CO – PO Mapping:

	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1	-	-	-	-	-	-	-	-	-	3	-	-
CO 2	-	-	-	-	-	-	-	-	-	3	-	-
CO 3	-	-	-	-	-	-	-	-	-	3	-	-
CO 4	-	-	-	-	-	-	-	_	-	3	-	-

Syllabus

Chapter – 1: Vyavaharika Kannada – Parichaya (Introducton to Vyavaharika Kannada)

Chapter – **2**: Kannada Aksharamale haagu uchharane (Kannada Alphabets and Pronunciation)

Chapter – 3: Sambhashanegaagi Kananda Padagalu (Kannada Vocabulary for Communication)

Chapter – 4: Kannada in Conversations (Sambhashaneyalli Kannada)

Chapter – 5: Activities in Kannada. (Kannada Sambhashanegaagi Chatuvatikegalu)

Text Book:

Vyavaharika Kannada by Dr. L. Thimmesh, Prof. V. Keshavamurthy, published by: VTU, Belagavi

Continuous Internal Evaluation & Semester End Examination : (25 marks Each)

Bloom's Category	CIE(25)	SEE(25)		
Remember	12	12		
Understand	13	13		

DIGITAL LOGIC DESIGN

Course Code :19ISE33		Credits	: 03
L:T:P:3:0:0	CIE Marks		:50
Exam Hours : 3	SEE marks		:50

Course Outcomes: At the end of the Course, the Student will be able to:

	Understand the working of logic Gates and simplify Boolean function using
CO1	Karnaugh maps and Quine Mc-Clusky method and implement functions with
	combinatorial circuits.
CO2	Analyze and design modular combinatorial logic circuits
CO3	Implementation of arithmetic logic circuits
CO4	Understand the Bi- stable elements like flip-flop and use its functionality to analyze
04	and design the sequential circuits and its applications
CO5	Apply the concepts of state and state transition for the analysis and design of
COS	sequential circuits.
CO6	Implement the logical circuits using HDL.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	1	1	1	1	1	2
CO2	3	3	3	2	1	1	1	1	1	1	1	2
CO3	3	3	3	2	1	1	1	1	1	1	1	2
CO4	3	3	3	2	1	1	1	1	1	1	1	2
CO5	3	3	3	2	1	1	1	1	1	1	1	2
CO6	3	3	3	2	1	1	1	1	1	1	1	2

Module No	Module Contents	Hours	CO's
1	Digital Logic and Combinational Logic Circuits : Overview of Basic Gates and Universal Logic Gates, AND-OR-Invert Gates, Positive and Negative Logic, Introduction to HDL Combinational Logic Circuits: Boolean Laws and Theorems, Sum-of-products Method, Truth Table to Karnaugh Map, Pairs, Quads, and Octets, Karnaugh Simplifications, Don't Care Conditions, Product-of-sums Method, Product-of-sums Simplification, Simplification by Quine-McClusky Method.	9	CO1, CO6
2	Data-Processing Circuits :Multiplexers, Demultiplexers, 1-of-16 Decoder, BCD-to-Decimal Decoders, Seven-segment Decoders, Encoders, EX-OR gates, Parity Generators and Checkers, Magnitude comparators (1 and 2 bit), Design of multiple output circuits using PLDs.HDL Implementation of Data Processing Circuits	9	CO2, CO6
3	Arithmetic Circuits:Binary Addition, Binary Subtraction, UnsignedBinaryNumbers,Sign-MagnitudeNumbers,2'sComplementRepresentation,2'sComplementArithmetic,ArithmeticBuildingBlocks, TheAdder-Subtractor,ArithmeticLogicUnit,Binary	9	CO3, CO6

	Multiplication and Division, Arithmetic Circuits using HDL		
4	Sequential Circuit Elements : Latches, types of Flip-flops, Flip-flop excitation tables, Registers, type of Shift Registers, Universal shift Registers, Applications of Shift Registers –Ring Counter, Johnson Counter, Sequence generator, Verilog implementation of Flip-flops and Registers.	9	CO4, CO6
5	Analysis of Sequential Circuits: Counters-Asynchronous and Synchronous Counters, Counter Design as Synthesis Problem, Design of Synchronous Sequential Circuits: Moore Model, Mealy Model, State Reduction Techniques, Verilog implementation of counters.	9	CO5, CO6

TEXT BOOKS:

- 1. Digital Principles and Applications, Donald P Leach and Albert Paul Malvino, 8th Edition, 2014, Tata McGraw Hill.
- 2. Digital Logic Applications and Design John M Yarbrough Cengage Learning 2011
- 3. Digital Principles and Design Donald D Givone McGraw Hill Education 1 st Edition, 2002
- 4. Logic and computer design Fundamentals M. Morries Mano and Charles Kime Pearson Learning 4 th Edition, 2014

REFERENCE BOOKS:

- 1. Digital Principles and design, Donald D. Givone, 2003, Tata McGraw Hill.
- 2. Digital Design: with an Introduction to Verilog HDL, M Morris Mano and ichael D. Ciletti, 5th Edition, 2013, Pearson Education.
- 3.Integrated Electronics Analog and Digital Circuits and Systems, Jacob Millman, Christos Halkias and Chetan D Parikh, 2nd Edition, 2011, Tata McGraw Hill.

CIE- Continuous Internal Evaluation: Theory (50 Marks)

Bloom's Category (Marks out of 50)	Tests (25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)	
Remember	-	-	-	
Understand	10	-	5	
Apply	10	10	5	
Analyze	5	5	-	
Evaluate	-	-	-	
Create	-	-	-	

SEE- Semester End Examination: Theory (50Marks)

Bloom's Category Marks	Marks

(out of 50)	
Remember	-
Understand	20
Apply	20
Analyze	10
Evaluate	-
Create	-

DATA STRUCTURES USING C

Course Code	: 19ISE34	Credits	:03
L:T:P	: 3:0:0	CIE Marks	: 50
Exam Hours	: 3	SEE Marks	: 50

Course Outcomes: At the end of the Course, the Student will be able to:

olem
נ

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	1	-	-	1	-	2
CO2	3	3	3	2	1	1	1	-	-	1	-	2
CO3	3	3	3	2	1	1	1	-	-	1	-	2
CO4	3	3	3	2	1	1	1	-	-	1	-	2
CO5	3	3	3	2	1	1	1	-	-	1	-	2
CO6	3	3	3	2	1	1	1	-	-	1	-	2

Module	Module Contents	Hours	CO's

No.			
1	Basic Concepts : Data Structures, Classifications (Primitive & Non Primitive), Data structure Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Arrays and String operations, Dynamic Arrays, Sparse Matrix.	9	CO1
2	STACKS AND QUEUES: Stacks, Applications of stacks: Recursion, Evaluation of Expressions, Factorial, Tower of Hanoi. Multiple Stacks. Queues: Definition, Queue representation, Primitive operations on queue, array representation of queues, Circular queue, Priority queue, Double ended queue, Applications of queues.	9	CO2, CO3
3	Linked Lists: Dynamic memory allocation revisited – malloc, calloc, realloc, free, Introduction to linked list, Representation of linked list in memory, primitive operations on linked list, searching a linked list, circular linked list, doubly linked list, header linked list, Linked representation of stack,Linked representation of queue.	9	CO3, CO4
4	TREES: Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps. Binary Search Trees, Selection Trees, Forests, Representation of Disjoint Sets, Counting Binary Trees, Graphs : Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search.	9	CO5
5	Searching - Linear Search, Binary Search, Hashing- Introduction, hash tables, hash functions, Overflow Handling, Comparison of Searching methods. Sorting -Insertion Sort, Selection Sort, Quick sort, Merge sort, Comparison of Sorting methods.	9	CO6

TEXT BOOKS:

- 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
- 2. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

REFERENCE BOOKS:

- 1. Gilberg&Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning,2014.
- 2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.
- 3. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2 nd Ed, McGraw Hill, 2013
- 4. A M Tenenbaum, Data Structures using C, PHI, 1989

CIE - Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	Assignments (10 Marks)	Quizzes (5 Marks)	Curricular/Co- Curricular (10 Marks)
Remember	5	-	-	-
Understand	5	-	2.5	-
Apply	10	5	2.5	-
Analyze	5	-	-	-
Evaluate	-	5	-	-
Create	-	-	-	10

SEE – Semester End Examination (50 Marks)

Bloom's Taxonomy	Marks
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	-
Create	-

COMPUTER ORGANIZATION

Course Code	: 19ISE35	Credits	:03
L: T: P	: 3:0:0	CIE Marks	: 50
Exam Hours	:3	SEE Marks	: 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Gain the Technical knowledge of how computers are constructed out of a set of					
COI	functional units and how the functional units operate, interact, and communicate					
CO2	Evaluate the merits and pitfalls in computer performance measurements.					
CO3	Analyze the memory hierarchy and its impact on computer cost/ performance					
CO 4	Gain the Technical knowledge on representation of data at the machine level and how					
CO4	computations are performed at the machine level.					
COF	Analyze internal structure of a processor and how the control signals are generated in					
COS	sequence					
CO6	Analyze the various ways in which input, output operations are performed.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	-	-	-	-	-	-	1
CO2	3	1	2	1	-	-	-	-	-	-	-	2
CO3	2	3	2	2	1	1	-	-	-	-	1	3
CO4	3	3	3	1	1	-	-	-	-	-	-	3
CO5	3	1	2	1	2	-	1	-	-	-	-	3
CO6	3	3	2	3	1	-	-	1	-	-	2	3

Module No.	Module Contents	Hours	CO's
1	Introduction : Functional Units, Basic Operational Concepts, Numbers, Arithmetic operations and characters, Memory locations and addresses, Memory Operations, Instructions and Instruction Sequencing, Addressing modes, Stacks, Subroutines.	9	CO1, CO2
2	Input/output organization : Accessing I/O devices, Interrupts, Bus structure, bus operation, Arbitration	9	CO6
3	Computer Arithmetic: Addition subtraction of signed numbers, Design of fast adders, Multiplication of unsigned and signed numbers, Fast multiplication, Integer Division, Floating point numbers and operations	9	CO4
4	Computer Memory System: Characteristics of Memory System, The Memory hierarchy, Elements of cache design: Cache addresses ,Cache size, Mapping function, replacement algorithms, Performance considerations, Semiconductor main memory: Organization, DRAM and SRAM, types of ROM	9	CO2, CO3
5	Basic Processing Unit: Fundamental concepts, Instruction execution, Hardware components, Instruction fetch and execution steps, control signals, hardwired control, CISC style processors	9	CO5

TEXT BOOKS:

- 1. Computer Organization and Embedded systems, Carl Hamacher, ZvonksVranesic, SafeaZaky, McGraw Hill, Sixth Edition, 2012.
- 2. Computer Organization and Architecture, William Stallings, Pearson/PHI, Eighth edition, 2013

REFERENCE BOOKS:

1. Computer Architecture a quantitative approach, John L. Hennessy and David A. Patterson, Elsevier, Fifth Edition, 2012.

- 2. Structured Computer Organization, Andrew S. Tanenbaum, PHI/Pearson, Sixth Edition 2013.
- 3. Computer Architecture: Fundamentals and principles of Computer Design, Joseph D. Dumas II, BS Publication, 2013.

Bloom's Category	Tests(25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)		
Remember	10	5	5		
Understand	5	5	5		
Apply	5	5	-		
Analyze	5	-	-		
Evaluate	-	-	-		
Create	-	-	_		

CIE- Continuous Internal Evaluation (50 Marks)

SEE- Semester End Examination (50 Marks)

Bloom's Category	Tests
Remember	20
Understand	10
Apply	10
Analyze	10
Evaluate	-
Create	-

PYTHON PROGRAMMING

Course Code	: 19ISE36	Credits	:03
L:T:P	: 3:0:0	CIE Marks	: 50
Exam Hours	: 3	SEE Marks	: 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Understand the benefits of python programming over other languages and program
COI	using python language.
CO2	Develop high order functions, file handling modules in Python language.
CO3	Implement new data structures in python to handle real world data.
CO4	Model the real world entities as classes and objects using python object oriented
04	programming concepts.
CO5	Apply exception handling and gain efficient testing, debugging skills in python.
CO6	Develop File Processing applications based on python programming libraries.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	-	2	-	-	2	-	1
CO2	3	3	3	2	2	-	2	-	-	2	-	1

CO3	3	3	3	2	2	_	2	_	_	2	_	1
C03		3		2	2		2			2		1
CO4	3	3	3	2	2	-	2	-	-	2	-	l
CO5	3	3	3	2	2	-	2	-	-	2	-	1
CO6	3	3	3	2	2	-	2	-	-	2	-	1

Module No.	Module Contents	Hours	CO's
	Introduction to Python: The basic elements of Python, The first		
	Program, Objects, Expression, Numerical Types, Variables,	0	001
1	Keywords and Assignments, multiple Assignments, Operators	9	COI
	and Operands, Order of operations, Decision making, Loop		
	control structures, Input data handling		
	Functions and Scoping : Functions and Scoping, Function calls,		
2	Type conversion, Type coercion, Math functions, Functions as	9	CO2
	Objects ,Composition ,Variables and parameters are local, global,		
	Recursion, Modules, Files Handling, Directories		
3	Sequence Data Types: Tuples, Set, Lists, List Comprehension,	0	CO3
5	Strings, Dictionaries.	7	COS
1	Classes and Objects: Encapsulation, Classes and objects,	0	CO4,
4	Encapsulation, Inheritance, Polymorphism.	7	CO5
	Exceptions and assertions: Handling exceptions, Exceptions as		
_	a control flow mechanism, Assertions.	0	
5	Applications: Web Scrapping, Working with Excel Spreadsheets,	9	CO6
	Working with PDF & Word documents, Working with CSV and		
	JSON data		

TEXT BOOKS:

- 1. John V Guttag, "Introduction to Computation and Programming Using Python", 2015, PrenticeHall of India
- 2. Mark Lutz, "Learning Python", 2015, 5th Edition, O'Reilly publication, 2016
- 3. Charles R. Severance, "Python for Everybody", Creativecommons 2016.

REFERENCE BOOKS:

- 1. Wesley J. Chun, "Core Python Programming", ,2nd Edition, Prentice Hall,2013
- 2. Allen Downey, Jeffrey Elkner and Chris Meyers, "How to think like a Computer Scientist,Learning with Python",Green Tea Press, 2014
- 3. "The Python Tutorial", http://docs.python.org/release/3.0.1/tutorial/
- 4. Automate the Boring Stuff with Python, https://automatetheboringstuff.com/

CIE- Continuou	s Internal I	Evaluation	(50 Marks)
-----------------------	--------------	------------	------------

Bloom's Taxonomy	Tests (25 marks)	Assignments (15 Marks)	Quizzes (10 Marks)
Remember	5	-	-
Understand	10	-	5
Apply	10	10	5
Analyze	-	-	-

Evaluate	-	-	-
Create	-	5	-

Bloom's Taxonomy	Tests
Remember	10
Understand	20
Apply	20
Analyze	-
Evaluate	_
Create	-

SEE- Semester End Examination (50 Marks)

DIGITAL LOGIC DESIGN - LABORATORY

Course Code	: 19ISL37	Credits	:1
L:T:P	: 0:0:1	CIE Marks	: 25
Exam Hours	: 3	SEE Marks	: 25

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Analyze and design modular combinatorial logic circuits.
CO2	Realize the Flip flops and verify the truth table
CO3	Design of sequential circuits
CO4	Implement the logical circuits using HDL.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	1	1	1	1	1	2
CO2	3	3	3	2	3	1	1	1	1	1	1	2
CO3	3	3	3	2	3	1	1	1	1	1	1	2
CO4	3	3	3	2	3	1	1	1	1	1	1	2

Experiment No.	Experiment
	PART-A
1	Given a 4-variable logic expression, simplify it using Entered Variable Map

	and realize the simplified logic expression using 8:1 multiplexer IC.
2	Perform n bit addition / subtraction using 4 bit full adder IC.
3	Realize JK, D and T Flip-Flops and verify its truth table
4	Design and implement Ring counter and Johnson counter using 4-bit shift register and demonstrate its working.
5	Design and implement a mod-n (n<8) synchronous up or down counter using J-K Flip-Flop ICs and demonstrate its working.
	PART-B
6	Simulate and verify the working of 8:1 multiplexer using Verilog code.
7	Simulate and verify the working of n bit adder/subtractor using Verilog code.
8	Simulate and verify the working of the JK,D and T Flip flop using Verilog code.
9	Simulate and verify the working of Ring and Johnson Counter using Verilog code.
10	Simulate and verify mod 8 synchronous up or down counter using Verilog code.

Note:

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%

Conduction	-60%
Viva – Voce	-20%

• Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

CIE - Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests(25 marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

SEE – Semester End Examination (25 Marks)

Bloom's Taxonomy	Tests
Remember	_
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

DATA STRUCTURES USING C - LABORATORY

Course Code	: 19ISL38	Credits	: 1.5
L:T:P	: 0:0:1.5	CIE Marks	: 25
Exam Hours	: 3	SEE Marks	: 25

Course Outcomes: At the end of the Course, the Student will be able to:

CO1 solving. Implement the concept of linked list data structure in Problem solving.	CO1	Analyze the operational aspects of linear data structures: stacks, queues in Problem
CO2 Implement the concept of linked list data structure in Problem solving.		solving.
Problem solving.	CO2	Implement the concept of linked list data structure in
6		Problem solving.
Analyze the operational aspects of non-linear data structures: Trees, Graphs in	CO3	Analyze the operational aspects of non-linear data structures: Trees, Graphs in
Problem solving.		Problem solving.
CO4 Apply various searching and sorting algorithms.	CO4	Apply various searching and sorting algorithms.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	-	1	-	-	-	2
CO2	3	3	3	2	3	1	-	1	-	-	-	2
CO3	3	3	3	2	3	1	-	1	-	-	-	2
CO4	3	3	3	2	3	1	-	1	-	-	-	2

Experiment No.	Experiment						
	PART-A						
	Design, Develop and Implement a menu driven Program in C for the						
1	following array operations.						
	a. Creating an array of N Integer Elements						
	b. Display of array Elements with Suitable Headings						
	c. Inserting an Element (ELEM) at a given valid Position (POS)						
	d. Deleting an Element at a given valid Position (POS)						
	e. Exit. Support the program with functions for each of the above operations.						
2	Design, Develop and Implement a Program in C for the following operations						
	on Strings.						
	a. Read a main String (STR), a Pattern String (PAT) and a Replace String						
	(REP)						
	b. Perform Pattern Matching Operation: Find and Replace all occurrences of						
	PAT in STR with REP if PAT exists in STR. Report suitable messages in						
	case PAT does not exist in STR.						
	Support the program with functions for each of the above operations. Don't						
	use Built-in functions.						

3	 Design, Develop and Implement a Program in C to create a structure to store the name, account number and balance of customers (more than 10) and store theirinformation. 1 - Write a function to print the names of all the customers having balance lessthan\$200. 2 - Write a function to add \$100 in the balance of all the customers having more than \$1000 in their balance and then print the incremented value of their balance.
4	Design, Develop and Implement a menu driven Program in C for the following operations on STACK of Integers (Array Implementation of Stack with maximum size MAX) a. Push an Element on to Stack b. Pop an Element from Stack c. Demonstrate how Stack can be used to check Palindrome d. Demonstrate Overflow and Underflow situations on Stack e. Display the status of Stack f. Exit Support the program with appropriate functions for each of the above operations
5	Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.
6	 Design, Develop and Implement a Program in C for the following Stack Applications a. Evaluation of Postfix expression with single digit operands and operators: +, -, *, /, %, ^. b. Solving Tower of Hanoi problem with n disks.
	PART-B
7	Design, Develop and Implement a menu driven Program in C for the following operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX) a. Insert an Element on to Circular QUEUE b. Delete an Element from Circular QUEUE c. Demonstrate Overflow and Underflow situations on Circular QUEUE d. Display the status of Circular QUEUE e. Exit Support the program with appropriate functions for each of the above operations
8	 Design, Develop and Implement a menu driven Program in C for the following operations on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Branch, Sem, PhNo a. Create a SLL of N Students Data by using front insertion. b. Display the status of SLL and count the number of nodes in it c. Perform Insertion / Deletion at End of SLL d. Perform Insertion / Deletion at Front of SLL(Demonstration of stack) e. Exit

Design, Develop and Implement a menu driven Program in C for the
following operations on Doubly Linked List (DLL) of Employee Data with
the fields: SSN, Name, Dept, Designation, Sal, PhNo
a. Create a DLL of N Employees Data by using end insertion.
b. Display the status of DLL and count the number of nodes in it
c. Perform Insertion and Deletion at End of DLL
d. Perform Insertion and Deletion at Front of DLL
e. Demonstrate how this DLL can be used as Double Ended Queue.
f. Exit
Using circular representation for a polynomial, design, develop, and execute a
program in C to accept two polynomials, add them, and then print the
resulting polynomial.
Design, Develop and Implement a menu driven Program in C for the
following operations on Binary Search Tree (BST) of Integers.
a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2
b. Traverse the BST in Inorder, Preorder and Post Order
c. Search the BST for a given element (KEY) and report the appropriate
message
d. Exit
Construct a dictionary of key-value pairs using Tree and search for a value
matching a key.

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%

Conduction	- 60%
Viva – Voce	-20%

• Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

CIE - Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests(25 Marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

SEE – Semester End Examination (25 Marks)

Bloom's Taxonomy	Tests
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

PYTHON PROGRAMMING LABORATORY

Course Code : 19ISL39	Credits	: 1.5
L:T:P : 0:0:1.5	CIE Marks	: 25
Exam Hours : 3	SEE Marks	: 25

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Develop high order functions, file handling modules in Python language.
CO2	Implement new data structures in python to handle real world data.
CO3	Model the real world entities as classes and objects using python object oriented
	programming concepts.
CO4	Develop File Processing applications based on python programming libraries.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	-	1	1	-	1	-	1
CO2	3	3	3	2	3	-	1	1	-	1	-	1
CO3	3	3	3	2	3	-	1	1	-	1	-	1
CO4	3	3	3	2	3	-	2	1	-	1	-	1

Experiment No.		Experiment
		PART-A
1	a.	Design and Implement a Python program to accept 3 digits from the user
		and print all possible combination from digits.
	b.	Create a Python program to take two command line inputs and compute
		the GCD and LCM of these two numbers.
	a.	Create a Python program to find the sum of natural numbers up to n using
2		recursive function
2	b.	Design and Develop a Python Program to Create a Dictionary with Key
		as First Character and Value as Words Starting with that Character.
	a.	A list rotation consists of taking the last element and moving it to the
		front. Forinstance, if we rotate the list [1,2,3,4,5], we get [5,1,2,3,4]. If we
		rotate it again, we get $[4,5,1,2,3]$. Write a Python function <i>rotatelist</i> (ls,k)
		that takes a list ls and a positive integer k and returns the list ls after k
		rotations. If k is not positive, your functionshould return ls unchanged.
3		Note that your function should not change ls itself, and should return the
		rotated list. Here are some examples to show how your function
		shouldwork.
		>>>rotatelist([1,2,3,4,5],1) #output is [5, 1, 2, 3, 4]
		>>>rotatelist([1,2,3,4,5],3) #output is [3, 4, 5, 1, 2]

	>>>rotatelist([1,2,3,4,5],12) #output is [4, 5, 1, 2, 3]
	b. Design and implement a python code that accepts two string from user
	and displays the characters which are present in both the strings. Use Set
	sequence type to achieve the same.
	a. Implement a Python program to count the numbers of characters in the
4	string and store them in a dictionary data structure
	b. Develop a Python program print to first 10 lines and last 10 lines in a file.
	a. Design a python program to compute the number of characters, words and lines in a file Alex Drint the most frequent words read from the file
	he Apply import from * and other module related concepts to create a
5	module called "calc" consists of 4 function that should return sum
5	division, multiplication and subtraction. Create another module caller
	"user", import the calc module and illustrate the use of all the functions of
	calc module.
	Design & Implement the program in python to demonstrate sending
6	Email and Text messages over the web.
	PART-B
	Design and Develop a Python Program to Append, Delete and Display
1	Elements of a List Using Classes and Objects.
	Design and Implement a Python Program to perform addition, subtraction,
8	multiplication of two complex numbers using binary operators overloading.
	Demonstrate the concept of Method Resolution order in multiple inheritance
9	Python Program.
	Create a Python Program to take care of Number Format Exception if user
	enters values other than integer for calculating average marks of 2 students
	enters values other than integer for calculating average marks of 2 students.
	The name of the students and marks in 3 subjects are taken from the user
10	while executing the program.
10	• In the same Program create your own Exception classes to take care of
	Negative values and values out of range (i.e. other than in the range of 0-
	100)
	 Include finally to output the statement "Drogram terminoted"
	• Include many to output the statement 'Frogram terminated'.
11.	Design & Implement the program in python to Manipulate images
	Design & Implement the program in python to handle the events in an
12	Application
	Application

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%
 - Conduction- 60%Viva Voce- 20%

• Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

Bloom's Category	Tests (25 Marks)				
Remember	-				
Understand	5				
Apply	15				
Analyze	5				
Evaluate	-				
Create	-				

CIE - Continuous Internal Evaluation (25 Marks)

SEE – Semester End Examination (25 Marks)

Bloom's Taxonomy	Marks
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

MINI PROJECT

Course Code : 19ISE391 CIE Marks : 25 Credits : 2 SEE Marks : 25

Exam Hours : 3

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Analyze the Real world problem through survey of existing problems
CO2	Design the modules for solving the problems identified
CO3	Implement the design modules with suitable programming language
CO4	Test the working modules at different levels

Mapping of Course Outcomes to Program Outcomes:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	-	1	1	3	1	3	2
CO2	3	3	3	2	3	-	1	1	3	1	3	2
CO3	3	3	3	2	3	-	1	1	3	1	3	2
CO4	3	3	3	2	3	-	2	1	3	1	3	2

Use C,C++,Java, C#, PHP, Python, or any other similar front-end tool. All applications must be demonstrated on desktop/laptop as a stand-alone or web based application.

Note :

- Every student should do individual mini project in the areas suggested by the department expert committee
- Minimum 2 reviews will be conducted by the department expert committee to know the progress of the mini project work
- In each review student should give presentation on the work carried out and show the relevant models
- A mini project report should be submitted to the department at the end of the mini project work
- Plagiarism check for the report : Similarity index of the report should not exceed more than 25%

FOURTH SEMESTER

(SYLLABUS)

DISCRETE MATHEMATICS AND GRAPH THEORY

Credits: 03

Course Code: 19CSE41/19ISE41 L: T: P: S: 2:1:0:0 Exam Hours : 03

CIE Marks: 50 SEE Marks: 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Verify the correctness of an argument using propositional and predicate logic and truth tables.
CO2	Demonstrate the ability to solve problems using counting techniques and combinatorics in the context of discrete probability.
CO3	Solve problems involving relations and functions.
CO4	Apply Pigeon hole principle to solve real life problems
CO5	Ability to represent and apply graph theory in solving computer science problems.
CO6	Illustrate the fundamental concepts of trees, connectivity and planarity graphs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	1	-	-	-	1	3	-	2
CO2	3	3	2	3	1	-	-	-	1	3	-	2
CO3	3	3	2	3	1	-	-	-	1	3	-	2
CO4	3	3	2	3	1	-	-	-	1	3	-	2
CO5	3	3	2	3	1	-	-	-	1	3	-	2
CO6	3	3	2	3	1	-	-	-	1	3	-	2

Course Syllabus						
Module No.	Contents of the Module	Hours	CO's			
1	Mathematical Logic: Basic Connectives and Truth Tables, Tautology and Contradiction, Logic Equivalence, The Laws of Logic, Logical Implication, Rules of Inference, Quantifiers Definition and the use of Quantifiers in logical implication.	9L + 2T	CO1			
2	Properties of the Integers : The Well Ordering Principle, Mathematical Induction, Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations, The Binomial Theorem.	9L + 2T	CO2			
3	Relations and Functions : Cartesian Products and Relations, One-to- One and Onto functions. The Pigeon hole Principle, Function Composition and Inverse Functions. Properties of Relations, Equivalence Relations and Partitions	9L + 2T	CO3, CO4			
4	Graph Theory: Graphs-Definitions and examples, Sub graphs, Walks, Paths, Circuits, Connectedness, Components, graph isomorphism, Euler graphs, Hamiltonian paths and cycles. Trees, Properties of trees, Distance and centers in tree, Rooted and binary trees.	9L + 2T	CO5			

	Trees, Connectivity and Planarity: Spanning trees , Fundamental		
	circuits, Spanning trees in a weighted graph, cut sets, Properties of cut		
5	set, All cut sets, Fundamental circuits and cut sets, Connectivity and	9L	
	separability, Network flows, 1-Isomorphism, 2-Isomorphism,	+	CO6
	Combinational and geometric graphs, Planar graphs, Different	2 T	
	representation of a planar graph.		

TEXT BOOKS:

- 1. Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, 5th Edition, Pearson Education, 2004.
- 2. Narsingh Deo, Graph Theory: With Application to Engineering and Computer Science, Prentice Hall of India, 2003.

REFERENCE BOOKS:

- 1. Basavaraj S. Anami and Venakanna S. Madalli, Discrete Mathematics A Concept based approach, Universities Press, 2016.
- 2. Kenneth H. Rosen, Discrete Mathematics and its Applications, 6th Edition, McGraw Hill, 2007.
- 3. D.S. Malik and M.K. Sen, Discrete Mathematical Structures: Theory and Applications, Thomson, 2004.
- 4. Thomas Koshy, Discrete Mathematics with Applications, Elsevier, 2005, Reprint 2008.

Assessment Pattern:

CIE- Continuous Internal Evaluation (50 Marks).

Bloom's Category	Tests (25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)
Remember	5	5	-
Understand	5	5	-
Apply	5	5	10
Analyze	5	-	-
Evaluate	5	-	-
Create	-	-	-

SEE- Semester End Examination (50Marks).

Bloom's Category	Questions (50 Marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

LIFE SKILLS FOR ENGINEERS

Course Code : 19HSS422 L: P: T: : 3:0:0 Exam Hours : 3 Credits : 03 CIE Marks : 50 SEE Marks : 50

Course Outcomes: At the end of the course, the student will be able to:

CO1	Set personal and professional goals
CO2	Develop his critical thinking skills and practise creativity.
CO3	Demonstratean understanding of personal and professional responsibility
CO4	Apply the concepts of personality development and grooming in real life
CO5	Understand self and work with groups
CO6	Articulate and convey his ideas and thoughts with clarity and focus

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		-	-	· _	-	2	-	3	3	3	2	3
CO2		-	-	· _	-	2	-	3	3	3	2	3
CO3		-	-		-	2	-	3	3	3	2	3
CO4		-	-	· _	-	2	-	3	3	3	2	3
CO5		-	-	· _	-	2	-	3	3	3	2	3
CO6		-	-	-	-	2	-	3	3	3	2	3

Module No.	Module Contents	Hours	COs
1	Goal Setting: Importance of Goals: Creating SMART goals; Critical Thinking and Problem Solving, Six Thinking Hats, Multiple Intelligences and Mind Mapping	6	CO1, CO2
2	Taking Ownership, Being Responsible and Accountable. Meaning of Ownership, Responsibility and Accountability, Practicing these philosophies in course, career and life, Developing a 'Credible Character Impression about self', Self-Motivation, Developing healthy Self-esteem, Leadership	8	CO3
3	Personality Development and Grooming: Expectations from the industry, building personal presence, corporate grooming, corporate etiquettes, Personal branding and image management	6	CO4
4	Self-Awareness and Self-Management: Emotional Intelligence, Knowing your own self- understanding personality, perception, values and attitude. Interpersonal skills - Knowing others, working well with others, developing the right attitude for work, being proactive and positive.	8	CO5

5	Articulation and Group Discussion: Ideas generation, expressing thoughts in a logical flow, presenting views in a group	8	CO6
			1

REFERENCE BOOKS:

- 1. The 7 Habits of Highly Effective People, Stephen R Covey, Neha Publishers.
- 2. Seven Habits of Highly Effective Teens, Convey Sean, New York, Fireside Publishers, 1998.
- 3. Emotional Intelligence, Daniel Coleman, Bantam Book, 2006.
- 4. How to win friends and influence people Dale Carnegie

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignments	Self-Study	Peer Evaluation
Marks (out of 50)	10	15	15	10
Remember	-	-	-	-
Understand	-	-	-	-
Apply	5	5	-	5
Analyze	-	-	5	-
Evaluate	-	-	-	
Create	5	10	10	5

SEE- Semester End Examination (50 Marks)

NOTE: Being a Life skills course we felt it would be suitable to do the final assessment through a structured group discussion which will provide an opportunity to test students in all levels of Bloom's Taxonomy.

Bloom's Category	Group Discussion
Remember	5
Understand	10
Apply	10
Analyse	10
Evaluate	5
Create	10

ENVIRONMENTAL SCIENCE AND AWARENESS

Course Code : 19HSS423

Credits : 0

L : **T** : **P** : 0:0:0

Exam Hours : 02 Hrs

CIE Marks : 25

SEE Marks : 25

Course Outcomes: At the end of the Course, the student will be able to:

CO1	Understand the concepts of environment, ecosystem, biodiversity and its
	interdependence on human life.
CO2	Develop an insight on types of natural resources and the concept of sustainable
	development.
CO3	Understand the different control measures of pollution and importance of waste
	management.
CO4	Think and apply technology as a solution for environment related concerns, keeping in
	view the different environmental acts and amendments.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	3	3	3	1	1	1	1
CO2	2	1	1	1	1	3	3	3	1	1	1	3
CO3	3	3	3	3	3	3	3	3	3	1	2	3
CO4	3	3	3	3	3	3	3	3	3	1	3	3

Module	Content of Module	Hrs	COs		
No.					
	Introduction to Environment, Ecosystem and biodiversity:				
	Environment - Components of Environment, Scope and importance of				
1	Environmental studies, Ecosystem: Types & Structure of Ecosystem, Energy	05	CO1		
	flow in the ecosystem, Food chains - food webs & ecological pyramids.		COI		
	Biodiversity - Definition, Hot-spots of biodiversity, Threats to biodiversity,				
	Conservation of biodiversity.				
	Natural Resources:				
	Renewable and non-renewable resources - Natural resources and associated		CO2		
2	problems. Role of an individual in conservation of natural resources. Water				
	conservation, rain water harvesting. Balanced use of resources for sustainable				
	lifestyle – strategies.				
	Environmental Pollution:				
	Definition, Causes, effects and control measures of Air Pollution, Water	<u>.</u>			
3	Pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal Pollution		CO3		
	and Nuclear hazards. Role of an individual in prevention of pollution - Waste				
	management – urban and industrial wastes.				

4	Social Issues and Environment: Environmental ethics – issues and possible solutions. Environment protection act – Air (prevention and Control of pollution) act & Water (prevention and Control of pollution) act. Role of government: Swatch Bharat Abhiyan, National Mission for Clean Ganga (NMCG), River rejuvenation, Role of Non-governmental Organizations (NGOs), Global warming and climate change.	04	CO3 CO4
5	Human Population and Environment: Population growth & explosion, Family welfare programme. Environment and human health, Human rights, Value education. Role of Technology in protecting environment and human health.	05	CO4

Text Books:

- "Environmental Studies: Basic Concepts" by Ahluwalia, V. K. The Energy and Resources Institute (TERI) Publication, 2nd edition, 2016. ISBN: 817993571X, 9788179935712.
- "Textbook of Environmental Studies for Undergraduate Courses of all branches of Higher Education" by Bharucha, Erach for UGC, New Delhi, 2004. ISBN: 8173715408, 9788173715402.

Reference Books:

- Handbook of Environmental Engineering by Rao Surampalli, Tian C. Zhang, Satinder Kaur Brar, Krishnamoorthy Hegde, Rama Pulicharla, Mausam Verma; McGraw Hill Professional, 2018. ISBN: 125986023X, 9781259860232
- 2. Environmental Science and Engineering by P. Venugopala, Prentice Hall of India Pvt. Ltd, New Delhi, 2012 Edition. ISBN: 978-81-203-2893-8.
- 3. Environmental Science- WorkiFng with the earth by G Taylor Miller Jr, Brooks Cole Thompson Publications, 10 thEdition. ISBN: 10: 0534424082.
- 4. Elements of Environmental Science and Engineering by P. Meenakshi, Prentice Hall of India Pvt. Ltd, 2005 Edition. ISBN: 8120327748, 9788120327740.

· · · · · · · · · · · · · · · · · · ·		,	
Bloom's	Tests	Assignments	Quiz
Marks (out of 50)	15	05	05
Remember	5	2	2
Understand	5	2	2
Apply	5	1	1
Analyze	0	0	0
Evaluate	0	0	0
Create	0	0	0

CIE- Continuous Internal Evaluation (25 Marks)

SEE – Semester End Examination (25 Marks)

Bloom's	Tests
Category	
Remember	10
Understand	10
Apply	5
Analyze	0
Evaluate	0
Create	0

DATABASE MANAGEMENT SYSTEMS

Course Code : 19ISE43	Credits: 03
L: T: P : 3:0:0	CIE Marks: 50
Exam Hours : 3	SEE Marks: 50
Course Outcomes: At the end of the course the student will be able to:	

CO1	Understand the database concepts, different database models, and database						
COI	management systems and design database schema.						
CON	Develop the ER structures for real world examples using the concept of Entity						
02	Relationship models with constraints and cardinalities.						
Understand the concepts of Normalization and design database which pe							
005	anomalies.						
CO4	Apply the concepts of relational database theory to manage relational database						
004	management system.						
CO5	Apply the concepts of triggers, embedded and dynamic SQL.						
CO6	Implement database applications in SQL.						

i i		-				-							
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	3	2	-	-	1	-	-	1	-	1
	CO2	3	2	3	2	-	1	-	1	-	1	-	1
	CO3	3	2	3	2	-	-	-	-	-	1	-	-
	CO4	3	2	3	2	-	-	1	-	-	1	-	1
	CO5	3	2	3	2	2	-	1	-	1	1	-	1
	CO6	3	2	3	2	2	-	1	-	1	1	-	1

Module	Module Contents	Hours	CO's
No.			
	Introduction: Introduction, An example, Characteristics of Database		
	Approach. Database Applications: Need for data management,		
1	Advantages of using DBMS approach. Data models & Database	9	CO1
	Architecture:Data models, schemas and instances, Three-schema		
	architecture and data independence, Centralized and client-server		
	architectures.		
2	ER Diagrams: Entity Types, Entity Sets, Attributes and Keys,	0	CO 2
2	Relationship types, Roles and Structural Constraints, Weak Entity	9	02
	Types, ER Diagrams.		
2	Relational Model: ER to Relational Mapping, Constraints, Keys	0	CO^2
3	Dependencies. Functional Dependencies: Normalization First, Second,	9	COS
	Third & Fourth Normal Forms, BCNF.		
	Relational Algebra: UpdateOperations, UnaryRelational Operations:		
4	SELECT and PROJECT, Relational AlgebraOperations from Set	0	CO4
4	Theory, Binary Relational Operations: JOIN andDIVISION;	9	C04
	Additional Relational Operations; Examples of Queries inRelational		
	Algebra; Relational Database Design Using ER- to-RelationalMapping.		
	Introduction to SQL:Basic DDL , Data Constraints , Triggers		CO5.
5	Database Security, AdvancedSQL - Embedded & Dynamic SQL,	9	,
	Views Basic queries in SQL, Morecomplex SQL Queries, Insert,		CO6
	Delete and Update statements in SQL.		

TEXT BOOKS:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2010.
- 2. RamezElmasri, Shamkant B. Navathe, "Fundamentals of Database S y s t e m s", Sixth Edition, Pearson / Addison Wesley, 2010
- 3. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2003.

REFERENCES:

1. C.J. Date, A. Kannan, S. Swamynatham, "An Introduction to Database Systems", 8th Edition, Pearson Education, 2006.

CIE - Continuous Internal Evaluation (50 Marks)

Bloom's Taxonomy	Tests (25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)		
Remember	5	-	5		
Understand	5	5	5		
Apply	10	5	5		
Analyze	-	5	-		
Evaluate	5	-	-		
Create	-	-	-		

SEE – Semester End Examination (50 marks)

Bloom's Taxonomy	Tests
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

OBJECT ORIENTED PROGRAMMING WITH JAVA

Course Code : 19ISE44 L:P:T : 3:0:0 Exam Hours : 3 Credits : 03 CIE Marks : 50 SEE Marks : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Model the real world applications using Object Oriented Programming concepts.						
CO2	Identify the importance of inheritance and interface concepts						
CO3	Analyze the importance of exception handling and learn the importance of string						
005	handling						
CO4	Apply the concept of Multithreading in concurrent programming						
CO5	Develop applications using collections framework for managing user defined types						
C06	Solve the real world problems using Object Oriented concepts and collection						
	framework in Java.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	-	2	-	-	2	_	1
CO2	3	3	3	2	2	-	2	-	-	2	-	1
CO3	3	3	3	2	2	-	2	-	-	2	-	1
CO4	3	3	3	2	2	-	2	-	-	2	-	1
CO5	3	3	3	2	2	-	2	-	-	2	-	1
CO6	3	3	3	2	2	-	2	-	-	2	-	1

Module	Module Contents	Hours	CO's

No.			
1	Introduction to Java: The Java Language, Java Development Kit (JDK); Java Buzzwords, Byte Code, JVM ,JRE and Java environment, Datatypes, variables and Arrays, Operators, Control statement, command line Arguments, Language fundamentals Object Oriented Programming with JAVA : Object Oriented concepts, Classes, Objects and Methods, Method Overloading, Constructor, static members, Implicit this	9	CO1
2	Inheritance and Interfacing: Inheritance, Method Overriding, Access specifiers, Abstract Classes, Final members, The Object Class, Interfaces, Package Fundamentals.	9	CO2
3	String Manipulation: Constructors, Length Operations, Character Extraction, Comparison, Searching, Modifying, StringBuffer, Exception handling: Fundamentals, Types, Using try, catch, throw, throws, finally, User Defined Exceptions.	9	CO3
4	Multi Threading: Thread Concept, Java Thread Model, The main method, Creating Threads, Thread Priorities, Synchronization	9	CO4
5	Collection Framework: Collections Overview, Collection Interfaces, Set, List, Map, Queue, Collection Classes, Type Wrappers, Accessing a collection using an Iterator,Sorting collections using utility methods equals() and hashCode contract in Java collections, overriding equals and hashCode methods in Java.	9	CO5 CO6

TEXT BOOKS

- 1. Herbert Schildt, "Java:The Complete Reference", 9thEdition, OraclePress,Tata McGraw Hill.
- **2.** Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

REFERENCES:

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object oriented Application Development, R. A. Johnson, Cengage Learning.
- 6. Y. Daniel Liang, "Introduction to JAVA Programming",7th Edition, Pearson Education,2007.

CIE- Continuous Internal Evaluation (50Marks)

Bloom's Category	Tests (25 Marks)	Assignments (10 Marks)	Quizzes (5 Marks)	Curricular/Co- Curricular (10 Marks)
------------------	---------------------	---------------------------	----------------------	--

Remember	5	-	-	-
Understand	5	5	2.5	-
Apply	10	5	2.5	5
Analyze	5	-	2	-
Evaluate	-	-	-	-
Create	-	-	-	5

SEE- Semester End Examination (50 Marks)

Blooms Category	Tests
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	_
Create	5

OPERATING SYSTEMS

Course Code : 19ISE45 L:P:T : 3:0:0 Exam Hours : 3 Credits: 03 CIE Marks: 50 SEE Marks : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Understand the concept of services provided by and the structure of an operating
	system.
CO2	Compare, implement and know when to apply various process scheduling algorithms
CO3	Ability to Learn and implement various operations on deadlock
CO4	Evaluate the efficiency aspect of using system resources and memory management
04	schemes
CO5	Handle operations like disk scheduling and file operations.
CO6	Ability to handle files in UNIX

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	1	1	-	-	1	-	1
CO2	3	2	2	2	1	1	1	-	-	1	-	1
CO3	3	2	2	2	1	1	1	-	-	1	-	1
CO4	3	2	2	2	1	1	1	-	-	1	-	1
CO5	3	2	2	2	1	1	1	-	-	1	-	1
CO6	3	2	2	2	1	1	1	-	-	1	-	1

Module No	Module Contents	Hours	COs
1	OPERATING SYSTEMS OVERVIEW: What is an operating system; history operating system concepts, system calls ; operating system structure; operating system operations; process management; memory management; storage management; protection and security; system boot, Case studies-UNIX, SOLARIS threads management.	9	CO1
2	PROCESS MANAGEMENT: Process Concept, Process Scheduling, Scheduling algorithms, Preemptive strategies Non preemptive strategies, Operations on Processes, Inter process Communication; Threads Overview, Multithreading Models, process synchronization, critical section problem, semaphores, UNIX System calls.	9	CO2
3	DEADLOCKS: Deadlocks: system model; deadlock characterization; methods for handling deadlocks; deadlock prevention; deadlock avoidance; deadlock detection and recovery, file locking system in UNIX.	9	CO3
4	STORAGE MANAGEMENT: Memory management strategies ;swapping; contiguous memory allocation; paging; Page replacement, Allocation of frames; segmentation, Memory management in UNIX.	9	CO4
5	I/O SYSTEMS: File system storage-File concept, file system structure, Access methods, Directory structure, File-system mounting ;disk structure ;disk scheduling, sharing and protection, UNIX File I/O operations.	9	CO5, CO6

TEXT BOOKS:

- 1. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S Tanenbaum, Albert S Woodhull, "Operating systems design and implementation", 2nd edition.
- 3. Abraham Silberchatz, Peter B. Galv, Greg Gagne, "Operating System Concepts", 8th edition, John Wileyin
- 4. UNIX-Concepts & Applications, SUMITABHADAS, McGraw Hill, TATA McGraw Hill Edition, 4th edition, 26th reprint 2015.
- 5. Sumitabha Das., Unix Concepts and Applications., 4th Edition., Tata McGraw Hill

REFERENCES:

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.
- 2. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw HillEducation", 1996.
- 3. D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata
- 4. Matthew portnoy,"Virtualization Essentials", 2ndedition, Wiley India pvt.ltd

CIE - Continuous Internal Evaluation (50 Marks)

Bloom's Taxonomy	Tests (25 Marks)	Assignments (15 Marks)	Quizzes (10 Marks)
Remember	5	-	-
Understand	5	5	5
Apply	10	10	5
Analyze	5	-	-
Evaluate	-	-	-
Create	-	-	-

SEE – Semester End Examination (50 marks)

Bloom's Taxonomy	Tests
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	-
Create	-

DATABASE MANAGEMENT SYSTEMS LABORATORY

Course Code : 19ISL46 L: T: P : 0:0:2

Credits: 2

CIE Marks: 25 SEE Marks: 25

Exam Hours : 3

Course Outcomes: At the end of the course the student will be able to:

CO1	Develop the ER structures for real world examples using the concept of Entity
COI	Relationship models with constraints and cardinalities.
CO2	Apply the concepts of relational database theory to manage relational database
	management system.
CO3	Apply the concepts of triggers, embedded and dynamic SQL.
CO4	Implement database applications in SQL.

Mapping of Course Outcomes with Program Outcomes

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	3	-	1	1	-	1	-	1
CO2	3	2	3	2	3	1	1	1	-	1	-	1
CO3	3	2	3	2	3	-	1	1	-	1	-	1
CO4	3	2	3	2	3	-	1	1	-	1	-	1

Common set of operations to be carried out for all the experiments:

1. Creation of tables, insertion of values with Data Definition Commands (use constraints while creating tables) and exercises on Data Manipulation Commands.

- 2. Developing Queries using clauses SELECT, FROM, WHERE, GROUP BY, HAVING.
- 3. Developing Queries using clauses Aggregate functions COUNT, SUM, AVG, MAX and MIN.
- 4. Developing Queries (along with NESTED Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSECT Constraints. Creation and Manipulation of Views.
- 5. Creation of simple PL/SQL programs and usage of cursor and triggers.
- 6. Procedure implementation

List of Experiments are as follows:

Experiment	Experiment
No.	
	PART-A
1	Class marks management system
2	Accounting package for a shop
3	Database manager for Magazine and news paper agency
4	Ticket booking for performances
5	Personal accounts – Insurance ,loans etc
6	Doctors diary and Billing systems
7	Hostel accounting
	PART-B
8	Video tape library
9	History of cricket scores
10	Cable TV transmission manager
11	Personal library
12	Project management system
13	Placement data management
14	Students club management system

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%

Conduction	-60%
Viva – Voce	-20%

• Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

Bloom's Taxonomy	Lab (25 Marks)
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

CIE - Continuous Internal Evaluation (25 Marks)

SEE – Semester End Examination (25 marks)

Bloom's Taxonomy	Lab
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY

Course Code	: 19ISL47	Credits :	: 1.5
L:T:P	: 0:0:1.5	CIE Marks :	25
Exam Hours	: 3	SEE Marks :2	25

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Design applications based on inheritance and interfacing concepts.
CO2	Develop solutions applying multithreading concepts in concurrent programming.
CO3	Develop applications using collections for managing user defined types
CO4	Apply the OOPS concepts to create solution to real world problems

Mapping of Course Outcomes to Program Outcomes:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	3	2	2	2	-	1	-	3
CO2	3	3	3	2	3	2	2	2	-	1	-	3
CO3	2	2	3	3	2	2	2	2	-	1	-	3
CO4	2	2	3	3	2	2	2	2	-	1	-	3

List of programs:

Experiment	Experiment
N0.	рарт а
	PARI-A Design and Implement a Java program that prints all real solutions to
	the quadratic equation $ax^2 + bx + c = 0$ Read in a b c from the user
1	and use the quadratic formula If the discriminant $b^2 = Aac$ is negative
	display a message stating that there are no real solutions
	The Fibonacci sequence is defined by the following rule. The first two
	values in the sequence are 1 and 1. Every subsequent values is the sum
	of the two values preceding it Implement a java program that uses both
2	a recursive function
	b non recursive functions
	to print the nth value in the fibonacci sequence
	Design and implement an algorithm to accept an array of 5 positive
	integers. The algorithm must then find the smallest positive integer in
3	the array which cannot be formed from the sum of 2 numbers in the
	array
	Develop a Java program to count the frequency of words, characters in
4	the given line of text provided by user. Also display the words in the
	line in ascending order
	Design and Develop a simple Java program to find the longest
_	substring without repeating characters in a given String Accept the
5	String through CommandLine argument.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Given a string and a non-empty word string, return a string made of
	each char just before and just after every appearance of the word in the
	string. Ignore cases where there is no char before or after the word, and
	a char may be included twice if it is between two words.
6	• If inputs are "abcXY123XYijk" and "XY", output should be "c13i".
	• If inputs are "XY123XY" and "XY", output should be "13".
	If inputs are "XY1XY" and "XY", output should be "11".
	Develop a Java program for the same.
	PART-B
	Design a class that can be used by a health care professional to keep
	track of a patient's vital statistics. Here's what the class should do:
	<ul> <li>Construct a class called Patient</li> </ul>
	Construct a class cancel I attent     Store a String name for the nationt
	<ul> <li>Store a sung name for the patient</li> <li>Store weight and height for patient as doubles</li> </ul>
	Store weight and neight for patient as doubles
7.	• Construct a new patient using these values
	• Write a method called BMI which returns the patient's BMI as a
	double. Bivit can be calculated as $BMI = (Weight in Pounds / (Uniother inches a Height in inches )) = 702$
	Height in inches x Height in inches $() \times 103$
	INEXI, construct a class called "Patients" and create a main method.
	Create a Patient object and assign some height and weight to that
	object. Display the Bivil of that patient.

	A library needs to develop an online application for two types of
	users/reles. Adults and children Both of these users should be able to
	users/foles, Adults and children. Both of these users should be able to
	register an account. Any user who is less than 12 years of age will be
	registered as a child and they can borrow a "Kids" category book for
	10 days, whereas an adult can borrow "Fiction" category books which
	need to be returned within 7 days. Develop Interfaces and classes for
	the categories mentioned above.
	1. Create an interface LibraryUser with the following methods
	declared,
	Method Name
	registerAccount
	• requestBook
	2. Create 2 classes "KidUsers" and "AdultUser" which implements the
	LibraryUser interface.
	3. Both the classes should have two instance variables as specified
	below.
	• Instance variables Data type
	• age int
	• bookType String
	4. The methods in the KidUser class should perform the following
	logic
	registerAccount function:
	• if age < 12, a message displaying "You have
8	successfully registered under a Kids Account" should be
0.	displayed in the console.
	• If(age>12) a message displaying "Sorry Age must be
	less than 12 to register as a kid" should be displayed in
	the console
	<ul> <li>request Book function:</li> </ul>
	• requestbook function.
	• If book I ype is Kids, a message displaying Book
	Issued successfully, please return the book within 10
	days" should be displayed in the console.
	• Else, a message displaying, "Oops, you are allowed to
	take only kids books" should be displayed in the
	console.
	5. The methods in the AdultUser class should perform the following
	logic.
	registerAccount function:
	• if age $> 12$ , a message displaying "You have
	successfully registered under an Adult Account" should
	be displayed in the console.
	• If age<12, a message displaying, "Sorry, Age must be
	greater than 12 to register as an adult" should be
	displayed in the console.
	<ul> <li>requestBook function:</li> </ul>
	• if bookType is "Fiction" a message displaying "Book
	Issued successfully please return the book within 7
	issued succession, preuse return the book within 7

	days" should be displayed in the console.
	• Else, a message displaying, "Oops, you are allowed to
	take only adult Fiction books" should be displayed in
	the console.
	6. Create a class "LibraryInterfaceDemo.java" with a main method
	which performs the above functions.
	Develop a Program to take care of Number Format Exception if user
	enters values other than integer for calculating average marks of 2
	students. The name of the students and marks in 3 subjects are taken
9	from the user while executing the program.
	• In the same Program write your own Exception classes to take care
	of Negative values and values out of range (i.e. other than in the
	range of 0-100)
	• Include finally to output the statement "Program terminated".
	Create class of SalesPersons as a thread that will display fives sales
	persons name. Create a class as Days as other Thread that has array of
10.	seven days. Call the instance of SalesPersons in Days and start both the
	Threads. Suspend SalesPersons on Sunday and resume on Wednesday.
	Use Thread handling Apis to perform the same.
11.	Create an Employee class with the related attributes and behaviors.
	Create one more class EmployeeDB which has the following methods.
	• booleanaddEmployee(Employee e)
	<ul> <li>booleandeleteEmployee(int eCode)</li> </ul>
	• String showPaySlip(int eCode)
	• Employee[] listAll()
	Use an ArrayList which will be used to store the employees and use
	enumeration/iterator to process the employees. Write a Test Program
	to test that all functionalities are operational.
12.	Create a HashMap to create a Telephone book storing name and phone
	number. Write a program so that when a name is given, corresponding
	phone number should be given back

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%

Conduction	- 60%
Viva – Voce	-20%

• Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

## CIE - Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests (25 Marks)
Remember	-
Understand	5
Apply	15

Analyze	5
Evaluate	-
Create	-

# SEE – Semester End Examination (25 Marks)

<b>Bloom's Taxonomy</b>	Marks
Remember	-
Understand	5
Apply	15
Analyze	5
Evaluate	-
Create	-

## **OPERATING SYSTEMS - LAB**

Course Code: 19ISL48Credits: 1.5L:T:P: 0:0:1.5CIE Marks: 25Exam Hours: 3SEE Marks: 25

## **Course Outcomes: At the end of the Course, the Student will be able to:**

Compare, implement and know when to apply various process scheduling algorithms
Ability to Learn and implement various operations on deadlock
Evaluate the efficiency aspect of using system resources and memory management
schemes
Develop applications based on file handling in UNIX

CO/PO	PO 1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	1	1	1	-	-	-	1
CO2	3	2	2	2	3	1	1	1	-	-	-	1
CO3	3	2	2	2	3	1	1	1	-	-	-	1
CO4	3	2	2	2	3	1	1	1	-	-	-	1

Experiment No.	Experiment				
	PART-A				
1	Design, Develop and Implement Basics of UNIX commands.				
2	Design, Develop and Implement a Program to implement a shell.				
3	Design, Develop and Implement a program to change current working				

	directory and display the inode details for each file in the new directory
4	Design, Develop and Implement a Parent process – Child process Relationship.
5	Design, Develop and Implement a Program that creates a child process. Parent process writes data to pipe and child process reads the data from pipe and prints it on the screen.
6	Design, Develop and Implement a Program for Process system calls.
	PART-B
7	Design, Develop and Implementation of CPU scheduling by using a) Round Robin b) FCFS
8	Design, Develop and Implement Implementation of CPU scheduling by using a) Shortest job first b) Priority
9	<ul> <li>Design, Develop and Implement File management system calls:</li> <li>a). create a file</li> <li>b). Copy one file to another</li> <li>c). Linking a file</li> <li>d). Delete a file.</li> </ul>
10	Write a program that demonstrates how two processes can share a variable using semaphore
11	Design, Develop and Implement an Algorithm for Dead Lock Detection
12	Design, Develop and Implement a Program by using page replacement algorithms for virtual memory management

For SEE Examination:

- One experiment from part A & One experiment from part B to be given
- Examination will be conducted for 50 marks and scaled down to 25 marks
- Marks Distribution : Procedure write-up 20%
  - Conduction- 60%Viva Voce- 20%
- Change of the experiment is allowed only once and procedure write-up marks will be considered as '0'

## **CIE - Continuous Internal Evaluation (25 Marks)**

Bloom's Category	Tests (25 Marks
Remember	-
Understand	5
Apply	10
Analyze	5
Evaluate	-
Create	5

<b>Bloom's Taxonomy</b>	Marks
Remember	-
Understand	5
Apply	10
Analyze	5
Evaluate	-
Create	5

#### MINI PROJECT

Course Code: 19ISE49CIE Marks: 25Exam Hours: 3

Credits : 2 SEE Marks : 25

## **Course Outcomes: At the end of the Course, the Student will be able to:**

CO1	Analyze the Real world problem through survey of existing problems
CO2	Design the modules for solving the problems identified
<b>CO3</b>	Implement the design modules with suitable programming language
CO4	Test the working modules at different levels

#### Mapping of Course Outcomes to Program Outcomes:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	PO11	PO12
CO1	3	3	3	2	3	-	1	1	3	1	3	2
CO2	3	3	3	2	3	-	1	1	3	1	3	2
CO3	3	3	3	2	3	-	1	1	3	1	3	2
CO4	3	3	3	2	3	-	2	1	3	1	3	2

Use C,C++,Java, C#, PHP, Python, or any other similar front-end tool. All applications must be demonstrated on desktop/laptop as a stand-alone or web based application.

Note :

• Every student should do individual mini project in the areas suggested by the department expert committee

- Minimum 2 reviews will be conducted by the department expert committee to know the progress of the mini project work
- In each review student should give presentation on the work carried out and show the relevant models
- A mini project report should be submitted to the department at the end of the mini project work
- Plagiarism check for the report : Similarity index of the report should not exceed more than 25%

# **APPENDIX** A

## **Outcome Based Education**

**Outcome-based education** (OBE) is an educational theory that bases each part of aneducational system around goals (outcomes). By the end of the educational experience each student should have achieved the goal. There is no specified style of teaching or assessment in OBE; instead classes, opportunities, and assessments should all help students achieve the specified outcomes.

There are three educational Outcomes as defined by the National Board of Accreditation:

**Program Educational Objectives:** The Educational objectives of an engineering degreeprogram are the statements that describe the expected achievements of graduate in their career and also in particular what the graduates are expected to perform and achieve during the first few years after graduation. [nbaindia.org]

**Program Outcomes:** What the student would demonstrate upon graduation. Graduateattributes are separately listed in Appendix C

**Course Outcome:** The specific outcome/s of each course/subject that is a part of theprogram curriculum. Each subject/course is expected to have a set of Course Outcomes

# **Mapping of Outcomes**



## **APPENDIX B**

## The Graduate Attributes of NBA

**Engineering knowledge**: Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.

**Problem analysis**: Identify, formulate, research literature, and analyze complex engineeringproblems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**Design/development of solutions**: Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**Conduct investigations of complex problems**: The problems that cannot be solved bystraightforward application of knowledge, theories and techniques applicable to the engineering discipline that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions that require consideration of appropriate constraints/requirements not explicitly given in the problem statement (like: cost, power requirement, durability, product life, etc.) which need to be defined (modeled) within appropriate mathematical framework that often require use of modern computational concepts and tools.

**Modern tool usage**: Create, select, and apply appropriate techniques, resources, andmodern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

**The engineer and society**: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**Environment and sustainability**: Understand the impact of the professional engineeringsolutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**Individual and team work**: Function effectively as an individual, and as a member or leaderin diverse teams, and in multidisciplinary settings.

**Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**Life-long learning**: Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.

## **APPENDIX C**

## **BLOOM'S TAXONOMY**

**Bloom's taxonomy** is a classification system used to define and distinguish differentlevels of human cognition—i.e., thinking, learning, and understanding. Educators have typically used Bloom's taxonomy to inform or guide the development of assessments (tests and other evaluations of student learning), curriculum (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies.

